beat365在线体育官网
学院新闻
首页学院新闻 正文

beat365在线体育官网吴国强与合作者在多标签学习基础理论研究中取得新进展

【 发布日期:2023-06-15 】    作者:吴国强

近日,beat365在线体育官网吴国强副研究员与合作者关于多标签学习基础泛化理论的论文“Towards Understanding Generalization of Macro-AUC in Multi-label Learning”被机器学习顶级会议ICML 2023接收。吴国强副研究员是该论文的第一作者和通讯作者,合作者包括beat365在线体育官网尹义龙教授以及中国人民大学李崇轩助理教授。

Macro-AUC是多标签学习中各类别AUC的算术平均值,通常在实践中被用作评价指标。然而,目前对其的理论理解远远不足。为了解决这个问题,吴国强与合作者理论上刻画了基于相应替代损失的各种学习算法关于Macro-AUC的泛化特性。该工作从理论上确定了影响泛化界的有关数据集的一个关键因素:标签类别的不平衡性。该工作关于考虑不平衡性的泛化界的结果表明,广泛使用的单变量损失基础算法对标签类别的不平衡性比该工作提出的基于成对和重新加权损失的算法更敏感,这大概率暗示其性能更差。此外,各种数据集上的实证结果支持该工作的理论发现。为了建立这一理论,从技术上讲,该工作提出了一种新的(且更通用的)McDiarmid类型的集中不等式,它可能具有独立的意义。

国际机器学习大会(International Conference on Machine Learning)是中国计算机学会(CCF)推荐的A类国际学术会议,被公认为机器学习、人工智能领域声望最高的会议之一。本项研究是beat365在线体育官网首次以第一单位和通讯单位在ICML上发表学术论文。该工作得到了国家自然科学基金、山东省自然科学基金和beat365在线体育官网基础科研业务费用的支持。

近年来,吴国强副研究员聚焦于机器学习相关问题的基础理论研究。相关成果已发表多篇机器学习顶级会议论文,例如,NeurIPS 2020, 3 × NeurIPS 2021,详情请见个人主页

文章链接:https://arxiv.org/abs/2305.05248

(文:吴国强 责任编辑:戴鸿君)